
CS1660: Intro to Computer Systems Security
Spring 2025

Lecture 3: Cryptography II
Co-Instructor: Nikos Triandopoulos

January 30, 2025

https://brown-csci1660.github.io

https://brown-csci1660.github.io/

CS1660: Announcements

u Override requests

u Status update

u Course updates

u Homework 0, Project 0 past due

u Ed Discussion, Top Hat (code: 084705), Gradescope (to become available soon)

u Lectures, online reading resources, in-class demos

2

Today

u Cryptography

u Symmetric-key ciphers

u Classical ciphers

u Perfect secrecy

u The One Time Pad

u Ciphers in practice

3

3.0 Classical ciphers

4

Substitution ciphers

Large class of ciphers: each letter is uniquely replaced by another
u key is a (random) permutation over the alphabet characters

u there are 26! ≈ 4×1026 possible substitution ciphers

u huge key space (larger than the # of starts in universe)

u e.g., one popular substitution “cipher”
for some Internet posts is ROT13

u historically

u all classical ciphers are of this type

5

Classical ciphers – general structure

Class of ciphers based on letter substitution

u message space M is “valid words” from a given alphabet

u e.g., English text without spaces, punctuation or numerals

u characters can be represented as numbers in [0:25]

u based on a predetermined 1-1 character mapping

u map each (plaintext) character into another unique (ciphertext) character

u typically defined as a “shift” of each plaintext character by a fixed per alphabet character
number of positions in a canonical ordering of the characters in the alphabet

u encryption: character shifting occurs with “wrap-around” (using mod 26 addition)

u decryption: undo shifting of characters with “wrap-around” (using mod 26 subtraction)

6

Limitations of substitution ciphers

Generally, susceptible to frequency (and other statistical) analysis

u letters in a natural language, like English, are not uniformly distributed

u cryptographic attacks against substitution ciphers are possible

u e.g., by exploiting knowledge of letter frequencies, including pairs and triples

u most frequent letters in English: e, t, o, a, n, i, ...

u most frequent digrams: th, in, er, re, an, ...

u most frequent trigrams: the, ing, and, ion, ...

u Attack framework first described in a 9th century book by al-Kindi

7

Letter frequency in (sufficiently large) English text

8

Classical ciphers – examples

(Julius) Caesar's cipher

u shift each character in the message by 3 positions

u I.e., 3 instead of 13 positions as in ROT-13

u cryptanalysis

u no secret key is used – based on “security by obscurity”

u thus the code is trivially insecure once knows Enc (or Dec)

9

Classical ciphers – examples (II)

Shift cipher

u keyed extension of Caesar’s cipher

u randomly set key k in [0:25]

u shift each character in the message by k positions

u cryptanalysis

u brute-force attacks are effective given that

u key space is small (26 possibilities or, actually, 25 as 0 should be avoided)
u message space M is restricted to “valid words”

u e.g., corresponding to valid English text

10

Alternative attack against “shift cipher”

u brute-force attack + inspection if English “make sense” is quite manual

u a better automated attack is based on statistics

u if character i (in [0:25]) in the alphabet has frequency pi (in [0..1]), then

u from known statistics, we know that Σi pi
2 ≈ 0.065, so

u since character i (in plaintext) is mapped to character i + k (in ciphertext)

u if Lj = Σi pi qi+j, then we expect that Lk ≈ 0.065 (qi: frequency of character i in ciphertext)

u thus, a brute-force attack can test all possible keys w.r.t. the above criterion

u the search space remains the same

u yet, the condition to finish the search becomes much simpler: Choose j so that Lj ≈ 0.065

11

Classical ciphers – examples (III)

Mono-alphabetic substitution cipher

u generalization of shift cipher

u key space defines permutation on alphabet

u use a 1-1 mapping between characters in the alphabet to produce ciphertext

u i.e., shift each distinct character in the plaintext (by some appropriate number of
positions defined by the key) to get a distinct character in the ciphertext

u cryptanalysis

u key space is large (of the order of 26! or ~288) but cipher is vulnerable to attacks

u character mapping is fixed by key so plaintext & ciphertext exhibit same statistics

12

3.1 Perfect secrecy

13

Security tool: Symmetric-key encryption scheme
Abstract cryptographic primitive, a.k.a. cipher, defined by
u a message space M; and
u a triplet of algorithms (Gen, Enc, Dec)

u Gen is randomized algorithm, Enc may be raldomized, whereas Dec is deterministic
u Gen outputs a uniformly random key k (from some key space K)

14

Eve

Alice BobEnc cm Dec m’c

M: set of possible
messages

Gen

k k

Probabilistic formulation

Desired properties

u Efficiency

u Correctness

u Security

Our setting so far is a random experiment

u a message m is chosen according to DM

u a key k is chosen according to DK

u Enck(m) → c is given to the adversary

15

Perfect correctness

For any k ∈ K , m ∈ M and any ciphertext c output of Enck(m),

it holds that

Pr[Deck (c) = m] = 1

16

Perfect security

Defining security for an encryption scheme is not trivial

u what we mean by “Eve “cannot learn” m (from c)” ?

17

Attempt 1: Protect the key k!

u Security means that

the adversary should not be able to compute the key k

u Intuition

u it’d better be the case that the key is protected!...

u Problem

u this definition fails to exclude clearly insecure schemes

u e.g., the key is never used, such as when Enck(m) := m

18

necessary condition

but not
sufficient condition!

Attempt 2: Don’t learn m!

u Security means that

the adversary should not be able to compute the message m

u Intuition

u it’d better be the case that the message m is not learned...

u Problem

u this definition fails to exclude clearly undesirable schemes

u e.g., those that protect m partially, i.e., they reveal the least significant bit of m

19

Attempt 3: Learn nothing!

u Security means that

the adversary should not be able to learn any information about m

u Intuition

u it seems close to what we should aim for perfect secrecy…

u Problem

u this definition ignores the adversary’s prior knowledge on M

u e.g., distribution DM may be known or estimated

u m is a valid text message, or one of “attack”, “no attack” is to be sent

20

Attempt 4: Learn nothing more!

u Security means that

the adversary should not be able to learn any additional information on m

u How can we formalize this?

21

Eve

Alice m

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

Enck(m) → c m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view
remains

the same!

Two equivalent views of perfect secrecy

a posteriori = a priori

For every DM, m ∈M and c ∈ C, for
which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr[M = m]

C is independent of M

For every m, m’ ∈M and c ∈ C,
it holds that

Pr[EncK(m) = c] = Pr[EncK(m’) = c]

22

Eve

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve

c

m =
attack

no attack

w/ prob. 0.8
w/ prob. 0.2

Eve’s view
remains

the same!
random

experiment
DM → m = M
DK → k = K

Enck(m) → c = C

~

Perfect secrecy (or information-theoretic security)

Definition 1

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space M,
is perfectly secret if for every DM, every message m ∈ M and every ciphertext c ∈ C
for which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr [M = m]
u Intuitively

u the a posteriori probability that any given message m was actually sent
is the same as the a priori probability that m would have been sent

u observing the ciphertext reveals nothing (new) about the underlying plaintext

23

Alternative view of perfect secrecy

Definition 2

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space M, is
perfectly secret if for every messages m, m’ ∈ M and every c ∈ C, it holds that

Pr[EncK(m) = c] = Pr [EncK(m’) = c]
u Intuitively

u the probability distribution DC does not depend on the plaintext

u i.e., M and C are independent random variables

u the ciphertext contains “no information” about the plaintext

u “impossible to distinguish” an encryption of m from an encryption of m’

24

3.2 The one-time pad

25

The one-time pad: A perfect cipher

A type of “substitution” cipher that is “absolutely unbreakable”
u invented in 1917 Gilbert Vernam and Joseph Mauborgne

u “substitution” cipher

u individually replace plaintext characters with shifted ciphertext characters

u independently shift each message character in a random manner

u to encrypt a plaintext of length n, use n uniformly random keys k1, . . . , kn

u “absolutely unbreakable”

u perfectly secure (when used correctly)

u based on message-symbol specific independently random shifts

26

The one-time pad (OTP) cipher

Fix n to be any positive integer; set M = C = K = {0,1}n

u Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
u Gen → {0,1}n

u Enc: given a key and a message of equal lengths, compute the bit-wise XOR
u Enc(k, m) = Enck(m) → k ⊕ m (i.e., mask the message with the key)

u Dec: compute the bit-wise XOR of the key and the ciphertext
u Dec(k, c) = Deck(c) := k ⊕ c

u Correctness
u trivially, k ⊕ c = k ⊕ k ⊕ m = 0 ⊕ m = m

27

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m1 and m2 and ciphertexts c, it holds that

Pr[EK(m1) = c] = Pr[EK(m2) = c],

where probabilities are measured over the possible keys chosen by Gen.

Proof

u events “EncK(m1) = c”, “m1 ⊕ K = c” and “K = m1 ⊕ c” are equal-probable
u K is chosen at random, irrespectively of m1 and m2, with probability 2-n

u thus, the ciphertext does not reveal anything about the plaintext

28

OTP characteristics

A “substitution” cipher

u encrypt an n-symbol m using n uniformly random “shift keys” k1, k2, . . . , kn

2 equivalent views

u K = M = C {0,1}n or G, (G,+) is a group

u “shift” method bit-wise XOR (m ⊕ k) addition/subtraction (m +/- k)

Perfect secrecy

u since each shift is random, every ciphertext is equally likely for any plaintext

Limitations (on efficiency)

u “shift keys” (1) are as long as messages & (2) can be used only once
29

view 1 view 2

Perfect, but impractical

In spite of its perfect security, OTP has two notable weaknesses
u the key has to be as long as the plaintext

u limited applicability
u key-management problem

u the key cannot be reused (thus, the “one-time” pad)

u if reused, perfect security is not satisfied

u e.g., reusing a key once, leaks the XOR of two plaintext messages

u this type of leakage can be devastating against secrecy

These weakness are detrimental to secure communication
u securely distributing fresh long keys is as hard as securely exchanging messages…

30

Importance of OTP weaknesses

Inherent trade-off between efficiency / practicality Vs. perfect secrecy
u historically, OTP has been used efficiently & insecurely

u repeated use of one-time pads compromised
communications during the cold war

u NSA decrypted Soviet messages that
were transmitted in the 1940s

u that was possible because the Soviets
reused the keys in the one-time pad scheme

u modern approaches resemble OTP encryption

u efficiency via use of pseudorandom OTP keys

u “almost perfect” secrecy
31

3.3 Computational
security

32

The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

u This scheme has some major drawbacks

u it employs a very large key which can be used only once!

u Such limitations are unavoidable and make OTP not practical

u why?

33

Now, what?

Our approach: Relax “perfectness”

Initial model

u the perfect secrecy (or security) requires that

u the ciphertext leaks absolutely no extra information about the plaintext

u to adversaries of unlimited computational power

Refined model

u a relaxed notion of security, called computational security, requires that

u the ciphertext leaks a tiny amount of extra information about the plaintext

u to adversaries with bounded computational power

34

Security relaxation for encryption

Perfect security: |k| = 128 bits, M, EncK(M) are independent, unconditionally
u no extra information is leaked to any attacker

Computational security: M, EncK(M) are independent, for all practical purposes
u no extra information is leaked but a tiny amount

u e.g., with prob. 2-128 (or much less than the likelihood of being hit by lighting)
u to computationally bounded attackers

u e.g., who cannot count to 2128 (or invest work of more than one century)

u attacker’s best strategy remains ineffective

u random guess a secret key or exhaustive search over key space (brute-force attack)

35

3.4 Symmetric encryption,
revisited: OTP with
pseudorandomness

36

Perfect secrecy & randomness

Role of randomness in encryption is integral

u in a perfectly secret cipher, the ciphertext doesn’t depend on the message

u the ciphertext appears to be truly random

u the uniform key-selection distribution is imposed also onto produced ciphertexts

u e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to “pseudorandomness”

u the ciphertext appears to be “pseudorandom”

u it cannot be efficiently distinguished from truly random

37

Symmetric encryption as “OPT with pseudorandomness”
Stream cipher
Uses a short key to encrypt long symbol
streams into a pseudorandom ciphertext

u based on abstract crypto primitive of
pseudorandom generator (PRG)

Block cipher
Uses a short key to encrypt blocks of symbols
into pseudorandom ciphertext blocks

u based on abstract crypto primitive of
pseudorandom function (PRF)

38

EncryptionPlaintext Ciphertext
… RESTUOKD … rrywytovty

key

state

STU
(block)(next block)

EncryptionPlaintext Ciphertext
OKD tty

key

3.4.1 Pseudorandom
generators

39

Stream ciphers

40

EncryptionPlaintext Ciphertext

… RESTUOKD … rrywytovty

key

state

Pseudorandom generators (PRGs)

Deterministic algorithm G that
on input a seed s∈{0,1}t, outputs G(s)∈{0,1}l(t)

G is a PRG if:

u expansion

u for polynomial l, it holds that for any n, l(n) > n

u models the process of extracting randomness from a short random string

u pseudorandomness

u no efficient statistical test can tell apart G(s) from a truly random string
41

s G(s) l(n)n
PRG

G

a.k.a. stream cipher

Generic PRG-based symmetric encryption

u Fixed-length message encryption

42

encryption scheme is plain-secure
as long as the underlying PRG is secure

Generic PRG-based symmetric encryption (cont.)

u Bounded- or arbitrary-length message encryption
u specified by a mode of operation for using an underlying stateful stream cipher,

repeatedly, to encrypt/decrypt a stream of symbols

43

Stream ciphers: Modes of operations

u Bounded- or arbitrary-length message encryption

44

on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure

random IV used for every new message is sent along with ciphertext, advanced-secure

3.4.2 Pseudorandom
functions

45

Block ciphers

46

STU
(block)(next block)

EncryptionPlaintext Ciphertext

OKD tty

key

Realizing ideal block ciphers in practice

We want a random mapping of n-bit inputs to n-bit outputs
u there are ~2^(n2n) possible such mappings
u none of the above can be implemented in practice

Instead, we use a keyed function Fk : {0,1}n → {0,1}n

u indexed by a t-bit key k
u there are only 2t such keyed functions

u a random key selects a
“random-enough” mapping
or a pseudorandom function

47

Fk

x

y = Fk(x)

Generic PRF-based symmetric encryption

u Fixed-length message encryption

48

encryption scheme is advanced-secure
as long as the underlying PRF is secure

Generic PRF-based symmetric encryption (cont.)

u Arbitrary-length message encryption
u specified by a mode of operation for using an underlying stateless block cipher,

repeatedly, to encrypt/decrypt a sequence of message blocks

49

Electronic Code Book (ECB)

u The simplest mode of operation
u block P[i] encrypted into ciphertext block C[i] = Enck(P[i])

u block C[i] decrypted into plaintext block M[i] = Deck(C[i])

50

u poor security

u produces the same ciphertext on the
same plaintext (under the same key)

u documents and images are not suitable
for ECB encryption, since patterns in the
plaintext are repeated in the ciphertext

u e.g., ECB

Strengths & weaknesses of ECB

Strengths

u very simple
u allows for parallel encryptions

of the blocks of a plaintext
u can tolerate the loss or

damage of a block

Weaknesses

51

Cipher Block Chaining (CBC) [or chaining]

Alternatively, the previous-block ciphertext is “mixed” with the current-block plaintext
u e.g., using XOR

u each block is encrypted as C[i] = Enck (C[i -1] Å P[i]),

u each ciphertext is decrypted as P[i] = C[i -1] Å Deck (C[i])

u here, C[0] = IV is a uniformly random initialization vector that is transmitted separately

52

Enck

P[1]

IV

C[1]

Enck

P[2]

C[2]

Deck

P[1]

IV

C[1]

Deck

P[2]

C[2]

CBC

