https://brown-csci1660.github.io

CS1660: Intro to Computer Systems Security Spring 2025

Lecture 3: Cryptography II

Co-Instructor: Nikos Triandopoulos

January 30, 2025

CS1660: Announcements

- Override requests
 - Status update
- Course updates
 - Homework 0, Project 0 past due
 - Ed Discussion, Top Hat (code: 084705), Gradescope (to become available soon)
 - Lectures, online reading resources, in-class demos

Today

Cryptography

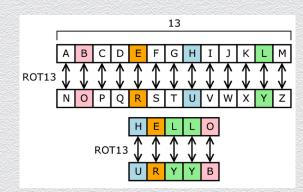
- Symmetric-key ciphers
- Classical ciphers
- Perfect secrecy
- The One Time Pad
- Ciphers in practice

3.0 Classical ciphers

Substitution ciphers

Large class of ciphers: each letter is uniquely replaced by another

- key is a (random) permutation over the alphabet characters
- there are $26! \approx 4 \times 10^{26}$ possible substitution ciphers
- huge key space (larger than the # of starts in universe)
- e.g., one popular substitution "cipher" for some Internet posts is ROT13
- historically
 - all classical ciphers are of this type



Classical ciphers – general structure

Class of ciphers based on letter substitution

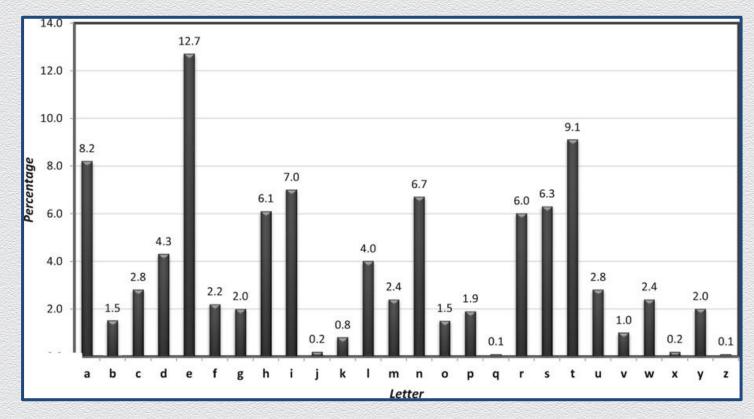
- message space \mathcal{M} is "valid words" from a given alphabet
 - e.g., English text without spaces, punctuation or numerals
 - characters can be represented as numbers in [0:25]
- based on a predetermined 1-1 character mapping
 - map each (plaintext) character into another unique (ciphertext) character
 - typically defined as a "shift" of each plaintext character by a fixed per alphabet character number of positions in a canonical ordering of the characters in the alphabet
- encryption: character shifting occurs with "wrap-around" (using mod 26 addition)
- decryption: undo shifting of characters with "wrap-around" (using mod 26 subtraction)

Limitations of substitution ciphers

Generally, susceptible to frequency (and other statistical) analysis

- letters in a natural language, like English, are not uniformly distributed
- cryptographic attacks against substitution ciphers are possible
 - e.g., by exploiting knowledge of letter frequencies, including pairs and triples
 - most frequent letters in English: e, t, o, a, n, i, ...
 - most frequent digrams: th, in, er, re, an, ...
 - most frequent trigrams: the, ing, and, ion, ...
 - Attack framework first described in a 9th century book by al-Kindi

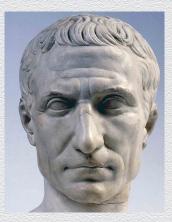
Letter frequency in (sufficiently large) English text



Classical ciphers – examples

(Julius) Caesar's cipher

- shift each character in the message by 3 positions
 - I.e., 3 instead of 13 positions as in ROT-13
- cryptanalysis
 - no secret key is used based on "security by obscurity"
 - thus the code is trivially insecure once knows Enc (or Dec)



Classical ciphers – examples (II)

Shift cipher

- keyed extension of Caesar's cipher
- randomly set key k in [0:25]
 - shift each character in the message by k positions
- cryptanalysis
 - brute-force attacks are effective given that
 - key space is small (26 possibilities or, actually, 25 as 0 should be avoided)
 - message space M is restricted to "valid words"
 - e.g., corresponding to valid English text

Alternative attack against "shift cipher"

- brute-force attack + inspection if English "make sense" is quite manual
- a better **automated** attack is based on statistics
 - if character i (in [0:25]) in the alphabet has frequency p_i (in [0..1]), then
 - from known statistics, we know that $\Sigma_i p_i^2 \approx 0.065$, so
 - since character i (in plaintext) is mapped to character i + k (in ciphertext)
 - if $L_j = \Sigma_i p_i q_{i+j}$, then we expect that $L_k \approx 0.065$ (q_i: frequency of character i in ciphertext)
- thus, a brute-force attack can test all possible keys w.r.t. the above criterion
 - the search space remains the same
 - yet, the condition to finish the search becomes much simpler: Choose j so that L_j ≈ 0.065

Classical ciphers – examples (III)

Mono-alphabetic substitution cipher

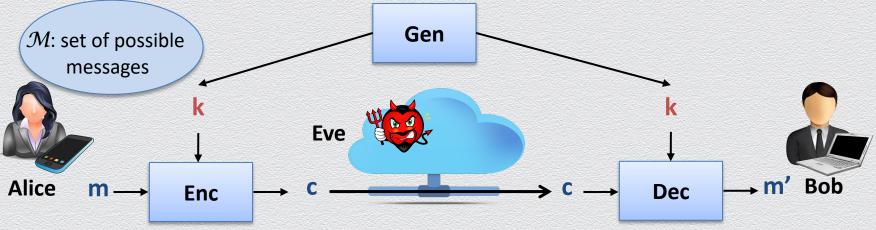
- generalization of shift cipher
- key space defines permutation on alphabet
 - use a 1-1 mapping between characters in the alphabet to produce ciphertext
 - i.e., shift each distinct character in the plaintext (by some appropriate number of positions defined by the key) to get a distinct character in the ciphertext
- cryptanalysis
 - key space is large (of the order of 26! or ~2⁸⁸) but cipher is vulnerable to attacks
 - character mapping is fixed by key so plaintext & ciphertext exhibit same statistics

3.1 Perfect secrecy

Security tool: Symmetric-key encryption scheme

Abstract cryptographic primitive, **a.k.a. cipher**, defined by

- ♦ a message space *M*; and
- a triplet of algorithms (Gen, Enc, Dec)
 - Gen is randomized algorithm, Enc may be raldomized, whereas Dec is deterministic
 - Gen outputs a uniformly random key k (from some key space \mathcal{K})



Probabilistic formulation

Desired properties

- Efficiency
- Correctness
- Security

Our setting so far is a random experiment

- ullet a message m is chosen according to $\mathcal{D}_{\mathcal{M}}$
- ullet a key k is chosen according to $\mathcal{D}_\mathcal{K}$
- $Enc_k(m) \rightarrow c$ is given to the adversary

Perfect correctness

For any $k\in\mathcal{K}$, $m\in\boldsymbol{\mathcal{M}}$ and any ciphertext c output of $Enc_k(m)$, it holds that

$Pr[Dec_k (c) = m] = 1$

Perfect security

Defining security for an encryption scheme is not trivial

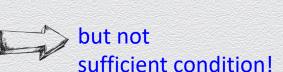
what we mean by "Eve "cannot learn" m (from c)" ?

Attempt 1: Protect the key k!

Security means that

the adversary should **not** be able to **compute the key k**

- Intuition
 - it'd better be the case that the key is protected!...
- Problem
 - this definition fails to exclude clearly insecure schemes
 - e.g., the key is never used, such as when $Enc_k(m) := m$



necessary condition

Attempt 2: Don't learn m!

Security means that

the adversary should not be able to compute the message m

- Intuition
 - it'd better be the case that the message m is not learned...
- Problem
 - this definition fails to exclude clearly undesirable schemes
 - e.g., those that protect m partially, i.e., they reveal the least significant bit of m

Attempt 3: Learn nothing!

Security means that

the adversary should not be able to learn any information about m

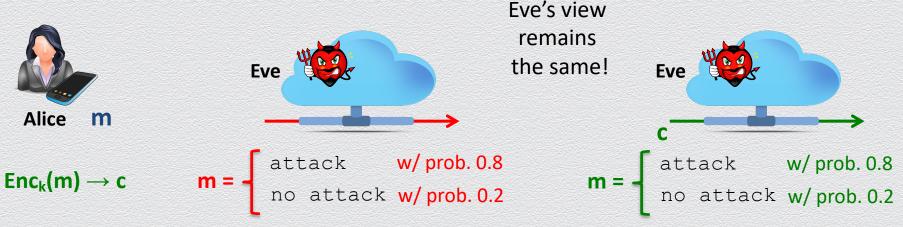
- Intuition
 - it seems close to what we should aim for perfect secrecy...
- Problem
 - this definition ignores the adversary's prior knowledge on ${\mathcal M}$
 - ullet e.g., distribution $\mathcal{D}_{\mathcal{M}}$ may be known or estimated
 - m is a valid text message, or one of "attack", "no attack" is to be sent

Attempt 4: Learn nothing more!

Security means that

the adversary should not be able to learn any additional information on m

How can we formalize this?



Two equivalent views of perfect secrecy

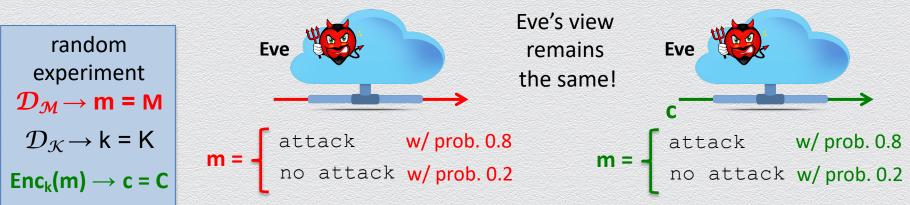
a posteriori = a priori

For every $\mathcal{D}_{\mathcal{M}}$, $m \in \mathcal{M}$ and $c \in C$, for which Pr [C = c] > 0, it holds that **Pr[M = m | C = c] = Pr[M = m]**

C is independent of M

For every m, m' $\in \mathcal{M}$ and $c \in C$, it holds that

 $Pr[Enc_{K}(m) = c] = Pr[Enc_{K}(m') = c]$



N

Perfect secrecy (or information-theoretic security)

Definition 1

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is **perfectly secret** if for every $\mathcal{D}_{\mathcal{M}}$, every message $m \in \mathcal{M}$ and every ciphertext $c \in C$ for which Pr [C = c] > 0, it holds that

Pr[M = m | C = c] = Pr [M = m]

- Intuitively
 - the *a posteriori* probability that any given message m was actually sent is the same as the *a priori* probability that m would have been sent
 - observing the ciphertext reveals nothing (new) about the underlying plaintext

Alternative view of perfect secrecy

Definition 2

A symmetric-key encryption scheme (Gen, Enc, Dec) with message space \mathcal{M} , is **perfectly secret** if for every messages m, m' $\in \mathcal{M}$ and every $c \in C$, it holds that

$$Pr[Enc_{K}(m) = c] = Pr[Enc_{K}(m') = c]$$

- Intuitively
 - the probability distribution \mathcal{D}_C does not depend on the plaintext
 - i.e., M and C are **independent** random variables
 - the ciphertext contains "**no information**" about the plaintext
 - "impossible to distinguish" an encryption of m from an encryption of m'

3.2 The one-time pad

The one-time pad: A perfect cipher

A type of "substitution" cipher that is "absolutely unbreakable"

- invented in 1917 Gilbert Vernam and Joseph Mauborgne
- "substitution" cipher
 - individually replace plaintext characters with shifted ciphertext characters
 - independently shift each message character in a random manner
 - to encrypt a plaintext of length n, use n uniformly random keys k_1, \ldots, k_n
- "absolutely unbreakable"
 - perfectly secure (when used correctly)
 - based on message-symbol specific independently random shifts

The one-time pad (OTP) cipher

Fix n to be any positive integer; set $\mathcal{M} = C = \mathcal{K} = \{0,1\}^n$

- Gen: choose n bits uniformly at random (each bit independently w/ prob. .5)
 - Gen $\rightarrow \{0,1\}^n$
- Enc: given a key and a message of equal lengths, compute the bit-wise XOR
 - $Enc(k, m) = Enc_k(m) \rightarrow k \bigoplus m$ (i.e., mask the message with the key)
- Dec: compute the bit-wise XOR of the key and the ciphertext
 - $Dec(k, c) = Dec_k(c) := k \bigoplus c$
- Correctness
 - trivially, $k \oplus c = k \oplus k \oplus m = 0 \oplus m = m$

OTP is perfectly secure (using Definition 2)

For all n-bit long messages m_1 and m_2 and ciphertexts c, it holds that $Pr[E_{\kappa}(m_1) = c] = Pr[E_{\kappa}(m_2) = c],$

where probabilities are measured over the possible keys chosen by Gen.

Proof

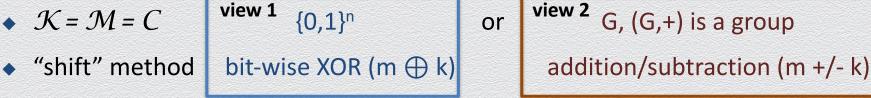
- events " $Enc_{K}(m_{1}) = c$ ", " $m_{1} \bigoplus K = c$ " and " $K = m_{1} \bigoplus c$ " are equal-probable
- K is chosen at random, irrespectively of m₁ and m₂, with probability 2⁻ⁿ
- thus, the ciphertext does not reveal anything about the plaintext

OTP characteristics

A "substitution" cipher

encrypt an n-symbol m using n uniformly random "shift keys" k₁, k₂, . . . , k_n

2 equivalent views



Perfect secrecy

- since each shift is random, every ciphertext is equally likely for any plaintext
 Limitations (on efficiency)
- "shift keys" (1) are as long as messages & (2) can be used only once

Perfect, but impractical

In spite of its perfect security, OTP has two notable weaknesses

- the key has to be **as long as** the plaintext
 - limited applicability
 - key-management problem
- the key cannot be reused (thus, the "one-time" pad)
 - if reused, perfect security is not satisfied
 - e.g., reusing a key once, leaks the XOR of two plaintext messages
 - this type of leakage can be devastating against secrecy

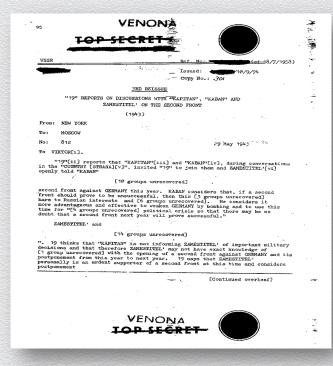
These weakness are detrimental to secure communication

• securely distributing fresh long keys is as hard as securely exchanging messages...

Importance of OTP weaknesses

Inherent trade-off between efficiency / practicality Vs. perfect secrecy

- historically, OTP has been used efficiently & insecurely
 - repeated use of one-time pads compromised communications during the cold war
 - NSA decrypted Soviet messages that were transmitted in the 1940s
 - that was possible because the Soviets reused the keys in the one-time pad scheme
- modern approaches resemble OTP encryption
 - efficiency via use of pseudorandom OTP keys
 - "almost perfect" secrecy



3.3 Computational security

The big picture: OPT is perfect but impractical!

We formally defined and constructed the perfectly secure OTP cipher

- This scheme has some major drawbacks
 - it employs a very large key which can be used only once!
- Such limitations are <u>unavoidable</u> and make OTP <u>not practical</u>
 - why?

Our approach: Relax "perfectness"

Initial model

- the perfect secrecy (or security) requires that
 - the ciphertext leaks absolutely no extra information about the plaintext
 - to adversaries of unlimited computational power

Refined model

- a relaxed notion of security, called **computational security**, requires that
 - the ciphertext leaks a tiny amount of extra information about the plaintext
 - to adversaries with bounded computational power

Security relaxation for encryption

Perfect security: |k| = 128 bits, M, $Enc_{\kappa}(M)$ are independent, **unconditionally**

no extra information is leaked to any attacker

Computational security: M, $Enc_{\kappa}(M)$ are independent, for all practical purposes

- no extra information is leaked but a tiny amount
 - e.g., with prob. 2⁻¹²⁸ (or much less than the likelihood of being hit by lighting)
- to computationally bounded attackers
 - e.g., who cannot count to 2¹²⁸ (or invest work of more than one century)
- attacker's best strategy remains ineffective
 - random guess a secret key or exhaustive search over key space (brute-force attack)

3.4 Symmetric encryption, revisited: OTP with pseudorandomness

Perfect secrecy & randomness

Role of randomness in encryption is integral

- in a perfectly secret cipher, the ciphertext **doesn't depend** on the message
 - the ciphertext appears to be **truly random**
 - the uniform key-selection distribution is imposed also onto produced ciphertexts
 - e.g., c = k XOR m (for uniform k and any distribution over m)

When security is computational, randomness is relaxed to "pseudorandomness"

- the ciphertext appears to be "pseudorandom"
 - it cannot be efficiently distinguished from truly random

Symmetric encryption as "OPT with pseudorandomness"

Stream cipher

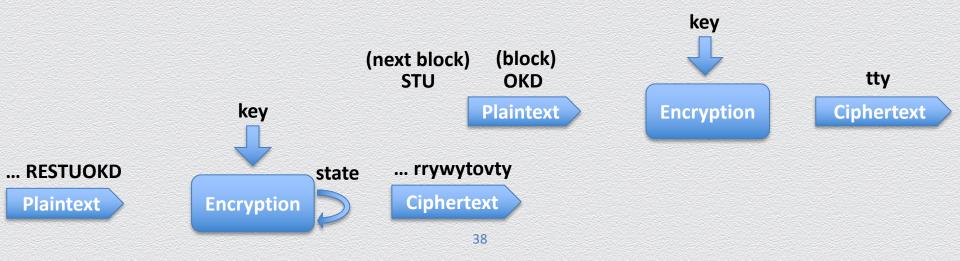
Uses a **short** key to encrypt **long** symbol **streams** into a **pseudorandom** ciphertext

 based on abstract crypto primitive of pseudorandom generator (PRG)

Block cipher

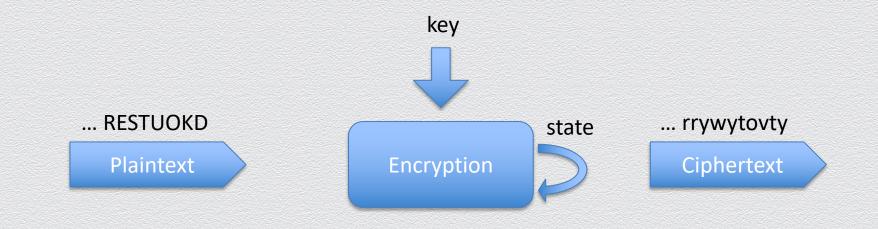
Uses a **short** key to encrypt **blocks** of symbols into **pseudorandom** ciphertext blocks

 based on abstract crypto primitive of pseudorandom function (PRF)



3.4.1 Pseudorandom generators

Stream ciphers



41

Pseudorandom generators (PRGs)

Deterministic algorithm G that on input a <u>seed</u> $s \in \{0,1\}^t$, outputs $G(s) \in \{0,1\}^{l(t)}$

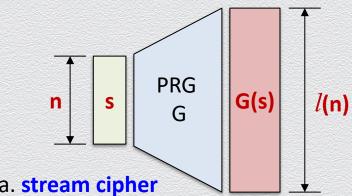
n S a.k.a. stream cipher

G is a PRG if:

- expansion
 - for polynomial *l*, it holds that for any n, *l*(n) > n
 - models the process of <u>extracting</u> randomness from a short random string

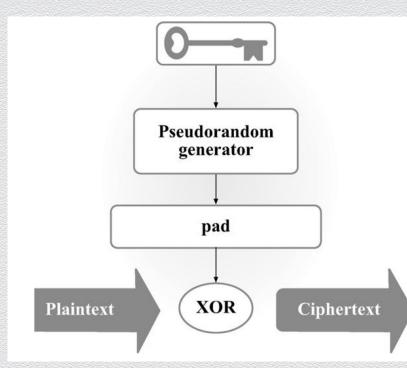
pseudorandomness

no efficient statistical test can tell apart G(s) from a truly random string



Generic PRG-based symmetric encryption

Fixed-length message encryption



encryption scheme is plain-secure as long as the underlying PRG is secure

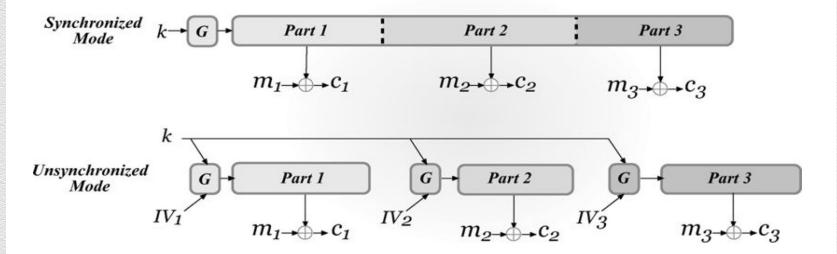
Generic PRG-based symmetric encryption (cont.)

- Bounded- or arbitrary-length message encryption
 - specified by a mode of operation for using an underlying stateful stream cipher, repeatedly, to encrypt/decrypt a stream of symbols

Stream ciphers: Modes of operations

Bounded- or arbitrary-length message encryption

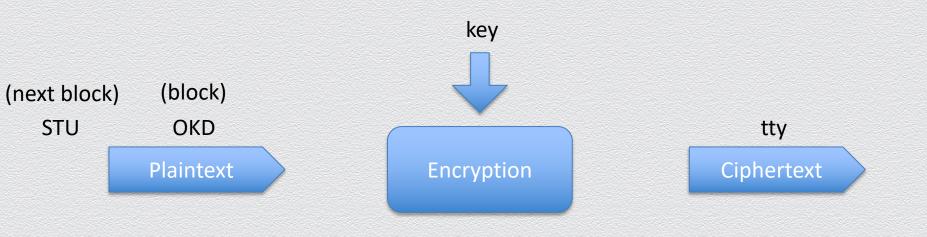
on-the-fly computation of new pseudorandom bits, no IV needed, plain-secure



random IV used for every new message is sent along with ciphertext, advanced-secure

3.4.2 Pseudorandom functions

Block ciphers



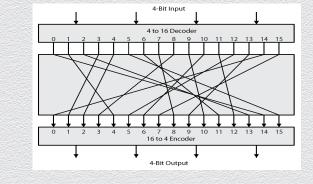
Realizing ideal block ciphers in practice

We want a **random** mapping of n-bit inputs to n-bit outputs

- there are ~2^(n2ⁿ) possible such mappings
- none of the above can be implemented in practice

Instead, we use a keyed function $F_k : \{0,1\}^n \rightarrow \{0,1\}^n$

- indexed by a t-bit key k
- there are only 2^t such keyed functions
- a random key selects a "random-enough" mapping or a pseudorandom function



X

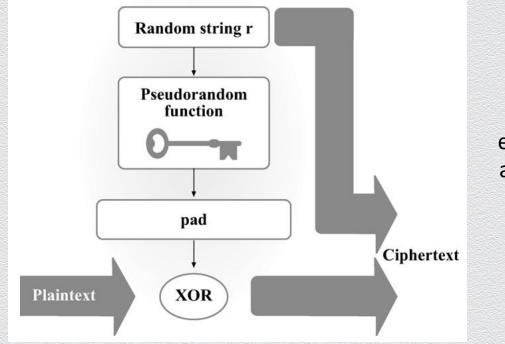
F⊾

 $y = F_{\nu}(x)$

Generic PRF-based symmetric encryption

48

Fixed-length message encryption



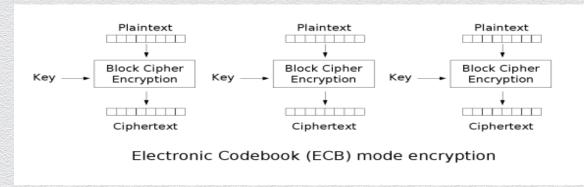
encryption scheme is advanced-secure as long as the underlying PRF is secure

Generic PRF-based symmetric encryption (cont.)

- Arbitrary-length message encryption
 - specified by a mode of operation for using an underlying stateless block cipher, repeatedly, to encrypt/decrypt a sequence of message blocks

Electronic Code Book (ECB)

- The simplest mode of operation
 - block P[i] encrypted into ciphertext block C[i] = Enc_k(P[i])
 - block C[i] decrypted into plaintext block M[i] = Dec_k(C[i])



Strengths & weaknesses of ECB

Strengths

- very simple
- allows for parallel encryptions of the blocks of a plaintext
- can tolerate the loss or damage of a block

Weaknesses

- poor security
- produces the same ciphertext on the same plaintext (under the same key)
- documents and images are not suitable for ECB encryption, since patterns in the plaintext are repeated in the ciphertext
- ◆ e.g.,

ECB

Cipher Block Chaining (CBC) [or chaining]

Alternatively, the previous-block ciphertext is "mixed" with the current-block plaintext

- e.g., using XOR
 - each block is encrypted as C[i] = Enck (C[i −1] ⊕ P[i]),
 - each ciphertext is decrypted as P[i] = C[i −1] ⊕ Dec_k (C[i])
 - here, C[0] = IV is a uniformly random initialization vector that is transmitted separately

